Brain-to-Brain (mind-to-mind) Interaction at distance: a pilot study
v.2

Patrizio Tressoldi*, Luciano Pederzoli°, Marco Bilucaglia°, Patrizio Caini°, Pasquale Fedele§,
Alessandro Ferrini°, Simone Melloni° and Agostino Accardo#

*Dipartimento di Psicologia Generale, Università di Padova, Italy; °EVANLAB, Firenze, Italy;
§LiquidWeb, Siena, Italy; # Dipartimento di Ingegneria e Architettura, Università di Trieste, Italy

For correspondence:
Patrizio E. Tressoldi
Dipartimento di Psicologia Generale
Università di Padova, ITALY
Email: patrizio.tressoldi@unipd.it
ABSTRACT

The hypothesis to detect a sequence of events by analyzing the EEG activity of two human partners spatially separated and connected only mentally was explored by sending one member of the pair a sequence of silence-signal events and analyzing the EEG activity of the second member. By using a special classification algorithm and five pairs of participants characterized by a long friendship and the capacity to maintain a focused mental concentration, we observed an overall percentage of correct coincidences of 78%, ranging from 100% for the first two segments, to approximately 43% percent of the last two. The percentages of coincidences of the first five segments of the protocol were above 80%.

Furthermore a robust statistically significant correlation was observed in the alpha band in 12 out 15 pairs of recordings.

The observed results seem to support the possibility to connect two brains at distance excluding conventional means and paving the way to devise a sort of mental telecommunication at distance.

Keywords: BCI, brain-to-brain interaction; entanglement; classification algorithm; supervisor learning machines
INTRODUCTION

Brain-to-brain interaction (BBI) at distance, that is, out of the five senses detection range, has been demonstrated by Pais-Vieira et al. (2013) by connecting the brains of rats via an Internet connection.

A similar effect has been demonstrated with humans in a pilot study by Rao and Stocco (2013), who sent via the Internet EEG activity generated by imaging to move the right hand to the brain of a distant partner triggering his motor cortex causing the right hand to press a key and by Grau et al. [3], who were able to induce the conscious perception of light flashes to a participant, triggering a robotized transcranial magnetic stimulation by a signal generated from the EEG correlates of a voluntary motor imagery from the partner and transmitted via the Internet.

Even though there is cultural resistance to accepting the possibility of observing similar effects in humans without an Internet connection, some evidence of these effects nevertheless exists. A comprehensive search of studies related to this line of research has revealed at least 18 studies from 1974 until the present time (see Supplementary Material).

In all these studies the principal aim was to observe whether the stimulus evoked brain activity (e.g. by presenting light flashes or images) in one member of the pair, could also be observed in the brain of the partner. Even if some of these studies, those using functional neuroimaging, can be criticized for potential methodological weaknesses that could account for the reported effects [4], the question is still open regarding whether or not it is possible to connect two human brains at distance.

The possibility of connecting the brains of two humans at distance without using any classical means of transmission is theoretically expected if it is assumed that two brains, and consequently two minds, can be entangled in a quantum-like manner. In quantum physics, entanglement is a physical phenomenon that occurs when pairs (or groups) of particles are generated or interact in ways such that the quantum state of each member must subsequently be described relative to others irrespective of their distance without apparent classical communication.

At present, generalizability from physics variables to biological and mental variables can be done only by analogy given the differences in their properties, but some theoretical models are already available. For example in the Generalized Quantum Theory [5,6], entanglement can be expected to occur if descriptions of the system that pertain to the whole system are complementary to descriptions of parts of the system. In this case the individual elements within the system which are described by variables complementary to the variable describing the whole system, are non-locally correlated.

Reasoning by analogy, we hypothesized the possibility of entangling two minds, and consequently two brains as complementary parts of a single system and studying their interactions at distance without any classical connections.

The possibility of a cognitive interaction at distance between two or more minds (brains) is allowed in another theoretical framework described by Tressoldi [7] within the dual-process theory of information processing. In synthesis it is postulated that System 1 (the mental processing system mainly involved in the processing of unconscious information) in contrast to System 2, (mainly
involved in the processing of conscious information) processes not only local information conveyed by sensory organs, but also nonlocal ones, i.e. those beyond the detection range of sensory organs.

In the following we report the results of a pilot experiment which main hypothesis was that the number of signals (coincidences) detected in the two partners during the stimulation were above chance, demonstrating for the first time that BBI at distance is feasible and can be used as a mental telecommunication device.

METHOD

Participants

Five healthy male adults were selected for this experiment. Their mean age was 35.5, SD = 8.3. The criteria for their inclusion were their friendship lasting more than five years and their experience in maintaining a focused mental concentration resulting from their experience in meditation and other practices to control mental activity ranging from 4 to 15 years.

Ethics Statement

Participation inclusion followed the ethics guidelines in accordance with the Helsinki Declaration and the study was approved by the Ethics Committee of Dipartimento di Psicologia Generale, the institution of the main author. Before taking part in the experiment, each participant provided a written consent after reading a brief description of the experiment.

Apparatus

Ad-hoc software designed by one of the co-authors, SM, managed the sequence of stimulations and the timing of the EEG activity recordings of the two partners. EEG activity was measured using two Emotiv® EEG Neuroheadsets connected wirelessly to PCs running Windows OS. Their technical characteristics are 14 EEG channels based on the International 10-20 locations (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4, plus 2 references) and one mastoid (M1) sensor that acted as a ground reference point to which the voltage of all other sensors was compared. The other mastoid (M2) was a feed-forward reference that reduced external electrical interference. The sampling rate is 128 Hz, bandwidth 0.2-45 Hz. Filtering is made by a build in the digital 5th order filter (plus 2 notch-filters, for 50 and 60 Hz) and connectivity is obtained by a proprietary wireless network.

Stimuli

One auditory clip was delivered binaurally at a high volume (80 dBs) to one of the partners through Parrot ZIK® headphones connected to the PC controlling stimulus delivery and EEG recordings. This clip, reproducing a baby crying, was selected from a list of the most arousing sounds [8] in order to enhance the EEG activity of the stimulated person.

Stimulation protocol

The protocol consists of three periods of listening to the auditory clip lasting 1 minute each interspersed by silent periods lasting 2.5 minutes for a total of 7 segments (i.e. silence-signal-
silence-signal-silence). To avoid possible although very difficult endogenous activation of brain activity corresponding to the precise timing of signal delivery when participants repeated the role of receivers, a research assistant intentionally varied by the start of the stimulation protocol.

Procedure

We devised a procedure aimed at recreating a real situation when there is an important event to share, in this case a communication related to a baby crying. In order to isolate the two partners, we placed them in two separate rooms approximately five meters apart. Each room was acoustically and visually isolated. Between these two rooms a third room served as control room where the research assistant controlled the entire procedure, the start of the experiment and the registration of the EEG activity of the two partners (see Figure S2). Any sensory information from the central PC and from the rooms of the pairs was completely absent. In particular the participant acting as “receiver” could not hear any sensory cues related to the signal both because of the filtering of environmental noises by the headphones and the use of a digital file that when accessed by the software does not produce any acoustic signal.

The partner designated as “sender” received the following instructions: “**when ready, you will hear music for 1 minute to relax and prepare yourself to receive the stimulation to send to your partner. To facilitate your mental connection with him/her, you will see a photo of his/her face by the special glasses** (virtual glasses model Kingshop OV2, see Figure S2). **Your only task is to aim to send him/her mentally what you will hear, reducing your body and head movements in order to reduce artifacts. You will receive three stimulations lasting 1 minute each, separated by 2 and a half minute intervals. The experiment will last approximately 15 minutes.**

The instructions to the second partner designated as “receiver” were: “**when ready, you will hear music for 1 minute to relax and prepare yourself to receive the stimulation sent by your partner. To facilitate your mental connection with him/her, you will see a photo of his/her face by the special glasses. Your task is to connect with him mentally trying to receive the stimulation he/she is hearing, reducing your body and head movements in order to reduce artifacts. The experiment will last approximately 15 minutes.**

When both partners gave their approval for the start of the experiment, the research assistant started the experiment to run automatically. At the end of the experiment both partners were informed of its end. After a break, they reversed their roles if they agreed or another participant acted as the receiver.

A total of 15 pairs of data were collected.

Data analysis

The EEG activity of each couple was analyzed off-line using the classification algorithm (see description below), detecting the number of coincidences and the number of errors and missing signals. Given our interest in detecting the correct sequence of events (silence-signal) and not their absolute overlapping, a signal detected in the EEG activity of the receiver was considered a coincidence if at least one of its boundaries (initial or final) overlapped with that of the stimulation protocol. All other signals were classified as errors or missing (see examples in Figure S1). To check the reliability of the scoring system, the data were analyzed independently by two co-authors,
PE and SM. Their overall agreement was 69.5 %, weighted Kappa statistic 0.81. Discrepancies were solved by re-checking the original data. All data are available for independent analyses in Figshare [9].

Classification Algorithm

The BrainScanner™ classification software was originally developed by one of the co-authors, P.F.¹ and is available upon request. The analysis was carried out offline taking as input the two files of each pair of participant obtained by the Emotiv® EEG Neuroheadset that were analyzed separately. The first analysis is a classical principal component analysis (PCA) to reduce the data obtained by the 14 channels to their latent variables. Eleven PCA components were retained for the training phase. For this phase, 50% of the data, randomly sampled, were feed-forwarded with the corresponding labels related to signal and silence to a support vector machine (SVM) using a standard C- support vector classification (C-SCV)¹ [9,10].

After the training phase, the algorithm was ready to generalize the obtained classification model to the remaining data, matching the sequence of events of the stimulation protocol with the EEG activity of the person connected at distance. The result is a contingency table (see results and examples in Figure S3) where it is possible to observe whether and how many events are coincidence.

For all pairs of data, we used the same parameters to be used for the training phase: 50% of data randomly selected for each of the three signal periods.

Correlational analyses

To obtain a convergent evidence of the relationship between the EEG activity of the two partners, we correlated their EEG activity related to the signal and silence periods observed in the 14 channels, with respect to the five frequency bands, delta, theta, alpha, beta and gamma normalized with respect to the total power. Each period of silence and stimulation was divided in tracts of 4 seconds computing the Power Spectral Density (PSD) by the periodogram method. The five spectral bands were distinguished as follows: delta (0.5-4Hz), theta (4-8Hz), alpha (8-15Hz), beta (15-30Hz) and gamma (30-45Hz). The PSD of the different bands was then expressed in normalized units dividing the power in each band by the sum of the powers in all the bands.

RESULTS

Coincidences between the delivered sequence of events and the EEG activity of the “receivers”²

The matrix of the total of coincidences out of 15 sessions, and errors or missing for each of 7 segments of the stimulation protocol between the partners is reported in Table 1, for a total of 105 segments (15*7).

Table 1: Matrix of the total of coincidences and errors out of 15, for each segment of the stimulation protocol.

¹ Pasquale Fedele p.fedele@liquidweb.it
² Coincidences related to the “senders” are available in http://figshare.com/articles/BrainToBrainPilot/100479

The overall percentage of coincidences is 78%; 95% CI= 72.87, far exceeding the percentage of errors and omissions, of 22%; 95% CI= 14-31. The corresponding Bayes Factor calculated with the online applet available at http://pcl.missouri.edu/bf-binomial, using a uniform prior, equals 4,347,826 in favour of the alternative hypothesis.

COMMENTS

From the data presented in Table 1, it can be observed that the coincidences are concentrated in the diagonal with the percentage of coincidences decreasing almost linearly moving from the first two segments to the last ones ($\rho= -0.95; 95\% CI: -0.66, 1.0$). However the percentages of coincidences of the first 5 segments are above 80%.

Correlational analyses

The graphs of the frequency bands relationship between each of the 15 pairs of participants as well as their Pearson’s r correlation values with corresponding 95% CIs are reported in the Supplementary Materials. To test the significance of the correlation coefficients we adopted a distribution-free approach, the bivariate non-parametric bootstrap procedure [12] with 5000 iterations. From the sampling distribution, we computed the 95% CI following the percentile method. The bivariate test rejects the null hypothesis if $r=0$ does not belong to the confidence interval.

In Table 2, we report the averaged correlations among the 15 pairs.

Table 2: Averaged correlations with the corresponding confidence intervals for each EEG frequency band, separately for the silence and signal events.

<table>
<thead>
<tr>
<th></th>
<th>DELTA</th>
<th>THETA</th>
<th>ALPHA</th>
<th>BETA</th>
<th>GAMMA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Silence</td>
<td>Signal</td>
<td>Silence</td>
<td>Signal</td>
<td>Silence</td>
</tr>
</tbody>
</table>

3 Obtained with 5000 bootstrap resampling
4 Original graphs can be downloaded from http://figshare.com/articles/BrainToBrainPilot/100479
The correlations are all statistically significant except those related to the beta band. The strongest ones are those related to the alpha band.

To give an example of a strong correlation, in Figure 1 we present the graph related to the alpha band of pair 8.

![Figure 1: alpha band normalized power spectrum values recorded in the fourteen channels of the EEG activity of pair 8 (T=transmitter, R=receiver).](image)

Final comment

In 11 out 15 pairs a strong correlation in the alpha band emerges between the silence and signal events. In all other frequency bands a few significant correlations are present, ranging from two to a maximum of six. The average correlation in the alpha band among all participants, was 0.58 and 0.55 for the silence and the signal events respectively, followed by a correlation of 0.45 and 0.31 respectively for the silence and signal events in the theta band, 0.36 and 0.32 in the gamma band and 0.25 and 0.26 in the delta band. Only in the beta band were there no statistically significant correlations.

DISCUSSION

The hypothesis to detect the number of coincidences in the brain activity of two humans at distance, that are not connected using classical means, seems supported by our pilot study. Using a protocol of three periods of stimulation lasting one minute each, interspersed within periods of non-stimulation (silence) lasting two and a half minutes, for a total of seven segments, we recorded the percentage of correct coincidences of the sequence of events from 100% for the first two, to
approximately 43% of the last two. Furthermore, the percentages of coincidences of the first five segments were above 80%.

We think that these results are mainly due to the innovative classification algorithm devised for this line of investigation and the enrolment of participants selected for their long friendship and experience in maintaining mental concentration on the task. The drop of coincidences after the five segments, corresponding to approximately ten minutes, could be a limitation of our classification algorithm in detecting the differences between silence and signal, due to an increase of exogenous and endogenous EEG noise correlated to fatigue and loss of concentration (mental connection) between the two partners.

The relationship between the EEG activities of the pairs of participants is further supported by the positive and statistically significant correlations both for the silence and signal events in all but the beta band, but particularly elevated in the alpha band in 11 out 15 pairs. The alpha band is a marker of attention [12,13] and in this case it could represent an EEG correlate of the synchronized attention between the pairs of participants.

Even if we are planning to improve the stimulation protocol, in its present form it is sufficient to support a simple mental telecommunication code at distance. For example it is sufficient to associate any piece of the first five segments with a message, i.e. silence-signal = “CALL ME”, silence-signal-silence= “DANGER”, etc.

The next steps of this line of research are the completion of a pre-registered confirmatory study increasing the physical distance between the pairs of participants, followed by an optimization of the classification algorithm to detect segment of EEG activity related to a signal lasting 30 seconds or less, longer sequences of events and the possibility to analyze the data online.
Acknowledgements: This research is funded by Bial Foundation contract 121/12. We thank the Proof Reading Service for English revision.
REFERENCES

SUPPLEMENTARY MATERIAL

References of studies investigating BBI at distance

SUPPLEMENTARY MATERIALS

Figure S1: schematic outline of the lab rooms

Figure S2: Image of a participant with the complete apparatus: Emotiv™ EEG, digital glasses and headphones.
Figure S3: three examples of the matrices of coincidence between the protocol of stimulation and the EEG activity recorded in the “receiver” brain. The first row shows the timing and the sequence of the seven periods of silence and stimulation as delivered to the “sender” brain. The second row shows the timing and the sequence of the seven periods of silence and stimulation as observed in the “receiver” brain.

Using the criterium of considering a coincidence a segment of the protocol with at least one timing boundary (initial or final) overlapped between the two rows, we count 7 coincidences in the first example, 5 in the second and 7 in the third one.
Table S1: Pearson correlation and 95% CIs among the values of the different frequency bands observed in the fourteen channels, for each of the fifteen pairs for both the silence (sil) and signal (sign) events. Values in bold are statistically significant.

<table>
<thead>
<tr>
<th>pair</th>
<th>Delta</th>
<th>Theta</th>
<th>Alpha</th>
<th>Beta</th>
<th>Gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.17</td>
<td>-0.19</td>
<td>0.50</td>
<td>0.32</td>
<td>-0.32</td>
</tr>
<tr>
<td></td>
<td>-0.61,0.45</td>
<td>-0.66,0.36</td>
<td>-0.04,0.90</td>
<td>-0.11,0.74</td>
<td>-0.03,0.85</td>
</tr>
<tr>
<td>2</td>
<td>-0.22</td>
<td>-0.18</td>
<td>0.12</td>
<td>0.09</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>-0.64,0.24</td>
<td>-0.65,0.31</td>
<td>-0.47,0.70</td>
<td>-0.46,0.71</td>
<td>-0.34,0.69</td>
</tr>
<tr>
<td>3</td>
<td>0.64</td>
<td>0.50</td>
<td>0.21</td>
<td>0.04</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>0.35,0.84</td>
<td>0.26,0.81</td>
<td>-0.26,0.58</td>
<td>-0.44,0.38</td>
<td>0.56,0.93</td>
</tr>
<tr>
<td>4</td>
<td>0.27</td>
<td>0.24</td>
<td>0.20</td>
<td>0.27</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>-0.27,0.72</td>
<td>-0.20,0.63</td>
<td>-0.31,0.56</td>
<td>-0.23,0.74</td>
<td>0.33,0.88</td>
</tr>
<tr>
<td>5</td>
<td>0.17</td>
<td>0.32</td>
<td>0.52</td>
<td>-0.30</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>-0.55,0.82</td>
<td>-0.50,0.89</td>
<td>0.13,0.89</td>
<td>-0.73,0.32</td>
<td>0.24,0.80</td>
</tr>
<tr>
<td>6</td>
<td>0.51</td>
<td>0.36</td>
<td>0.55</td>
<td>0.46</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>-0.02,0.82</td>
<td>-0.40,0.76</td>
<td>0.27,0.81</td>
<td>-0.008,0.79</td>
<td>0.30,0.92</td>
</tr>
<tr>
<td>7</td>
<td>-0.12</td>
<td>-0.32</td>
<td>0.68</td>
<td>0.57</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>-0.53,0.43</td>
<td>-0.70,0.20</td>
<td>0.37,0.90</td>
<td>0.22,0.82</td>
<td>0.45,0.85</td>
</tr>
<tr>
<td>8</td>
<td>0.32</td>
<td>0.27</td>
<td>0.50</td>
<td>0.54</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>-0.31,0.86</td>
<td>-0.41,0.79</td>
<td>0.15,0.88</td>
<td>0.16,0.89</td>
<td>0.76,0.95</td>
</tr>
<tr>
<td>9</td>
<td>0.34</td>
<td>0.45</td>
<td>0.77</td>
<td>0.58</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>-0.23,0.83</td>
<td>-0.13,0.85</td>
<td>0.49,0.95</td>
<td>0.12,0.89</td>
<td>0.79,0.98</td>
</tr>
<tr>
<td>10</td>
<td>0.54</td>
<td>0.58</td>
<td>-0.01</td>
<td>-0.04</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>0.31,0.85</td>
<td>0.23,0.85</td>
<td>-0.31,0.91</td>
<td>-0.29,0.74</td>
<td>0.40,0.91</td>
</tr>
<tr>
<td>11</td>
<td>0.10</td>
<td>0.31</td>
<td>0.56</td>
<td>0.46</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>-0.56,0.88</td>
<td>-0.48,0.86</td>
<td>0.28,0.79</td>
<td>0.14,0.77</td>
<td>-0.54,0.84</td>
</tr>
<tr>
<td>12</td>
<td>0.02</td>
<td>0.23</td>
<td>0.80</td>
<td>0.57</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>-0.54,0.57</td>
<td>-0.32,0.78</td>
<td>0.58,0.94</td>
<td>0.20,0.83</td>
<td>-0.49,0.62</td>
</tr>
<tr>
<td>13</td>
<td>0.60</td>
<td>0.43</td>
<td>0.52</td>
<td>0.30</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>0.09,0.95</td>
<td>-0.11,0.84</td>
<td>-0.07,0.86</td>
<td>-0.29,0.79</td>
<td>0.33,0.92</td>
</tr>
<tr>
<td>14</td>
<td>0.39</td>
<td>0.39</td>
<td>0.47</td>
<td>0.45</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>-0.16,0.86</td>
<td>-0.31,0.85</td>
<td>-0.16,0.86</td>
<td>-0.10,0.85</td>
<td>0.20,0.91</td>
</tr>
<tr>
<td>15</td>
<td>0.45</td>
<td>0.52</td>
<td>0.37</td>
<td>0.34</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>0.15,0.78</td>
<td>0.11,0.84</td>
<td>-0.11,0.70</td>
<td>-0.19,0.75</td>
<td>0.21,0.88</td>
</tr>
</tbody>
</table>
Graphs of the values related to the FD and the frequency bands related to the silence and signals observed in each of the fourteen channels on the fifteen pairs of participants. Legend: t=transmitter; r=receiver.
The SVM belongs to the family of generalized linear classifiers, also known as maximum margin classifiers, because at the same time they minimize the empirical error classification and maximize
the geometric margin. SVM can be thought of as an alternative learning technique for the polynomial classifiers, as opposed to the classical techniques of neural networks training. Neural networks with a single layer have an efficient learning algorithm, but they are useful only in the case of linearly separable data. Conversely, the multilayer neural networks can represent non-linear functions, but they are difficult to train because of the number of dimensions of the space of weights, and because the most common techniques, such as back-propagation, allow to obtain the network weights by solving an optimization problem not convex and not bound, consequently it presents an indeterminate number of local minimum. The SVM training technique solves both problems: it is an efficient algorithm and is able to represent complex non-linear functions. The characteristic parameters of the network are obtained by solving a convex quadratic programming problem with equality constraints or box type (in which the value of the parameter must be maintained within a range), which provides a single global minimum. Regarding the kernel choice, the one that gave the best performance during the tests was the RBF (radial basis function).